
implemented via a script: the script takes an elliptic curve signature as input, verifies it against the

transaction and the address that owns the UTXO, and returns 1 if the verification is successful and 0

otherwise. Other, more complicated, scripts exist for various additional use cases. For example, one can

construct a script that requires signatures from two out of a given three private keys to validate ("multisig"), a

setup useful for corporate accounts, secure savings accounts and some merchant escrow situations. Scripts

can also be used to pay bounties for solutions to computational problems, and one can even construct a script

that says something like "this Bitcoin UTXO is yours if you can provide an SPV proof that you sent a Dogecoin

transaction of this denomination to me", essentially allowing decentralized cross-cryptocurrency exchange.

However, the scripting language as implemented in Bitcoin has several important limitations:

● Lack of Turing-completeness - that is to say, while there is a large subset of computation

that the Bitcoin scripting language supports, it does not nearly support everything. The main

category that is missing is loops. This is done to avoid infinite loops during transaction verification;

theoretically it is a surmountable obstacle for script programmers, since any loop can be simulated

by simply repeating the underlying code many times with an if statement, but it does lead to scripts

that are very space-inefficient. For example, implementing an alternative elliptic curve signature

algorithm would likely require 256 repeated multiplication rounds all individually included in the

code.

● Value-blindness - there is no way for a UTXO script to provide fine-grained control over the

amount that can be withdrawn. For example, one powerful use case of an oracle contract would be a

hedging contract, where A and B put in $1000 worth of BTC and after 30 days the script sends $1000

worth of BTC to A and the rest to B. This would require an oracle to determine the value of 1 BTC in

USD, but even then it is a massive improvement in terms of trust and infrastructure requirement over

the fully centralized solutions that are available now. However, because UTXO are all-or-nothing, the

only way to achieve this is through the very inefficient hack of having many UTXO of varying

denominations (eg. one UTXO of 2k for every k up to 30) and having the oracle pick which UTXO to

send to A and which to B.

● Lack of state - UTXO can either be spent or unspent; there is no opportunity for multi-stage

contracts or scripts which keep any other internal state beyond that. This makes it hard to make

multi-stage options contracts, decentralized exchange offers or two-stage cryptographic commitment

protocols (necessary for secure computational bounties). It also means that UTXO can only be used

to build simple, one-off contracts and not more complex "stateful" contracts such as decentralized

organizations, and makes meta-protocols difficult to implement. Binary state combined with

value-blindness also mean that another important application, withdrawal limits, is impossible.

● Blockchain-blindness - UTXO are blind to blockchain data such as the nonce and previous

hash. This severely limits applications in gambling, and several other categories, by depriving the

scripting language of a potentially valuable source of randomness.

Page 12

ethereum.org

